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A known classification is established for the static equations of linear shell the- 
ory. Integrals therein corresponding to the membrane, pure bending state of stress, 
edge effects, state of stress with high variability, etc., are disting~shed, These 
concepts can underlie all known approximate methods of shell statics [l]. 

The same classification is established herein for the integrals of the two-di- 
mensional dynamic equations of linear shell theory. Appropriate modifications 
of the approximate equations are deduced. It is shown that a more subdivided 
classification is expedient in dynamics, in which the variability of the desired 

state of stress must be taken into account not only in the geometric variables, 
but also in time. 

1. Let us refer the shell middle surface to an arbitrary orthogonal coordinate system 
with parameters a,, a,. Let Al, A, denote the coefficients of the first quadratic 

form, Rll, R1z, Rss, a,, ue the radii of surface curvature and the displacements in 
the coordinate directions, and nt the mass per unit area of the middle surface. We bor- 
row the remaining notation from the monograph [I]. Also taken therefrom are the gene- 
ral equations of shell theory (with the addition of internal terms and the above-mention- 

ed partial change in the notation). 

Let us introduce the small parameter q defined by the equality 

q=hlr (1.1) 

in which h is half the shell thickness, and r is the characteristic radius of curvature of 

the middle surface,and let us replace the independent variables and the desired quan- 
tities by means of the formulas 

oi = rjagi, t= 
f 

m (1 - 5%) 
S’h 

I$% 

q’ zzz q-c q, w’ = w 

Fi’ Z q”-” ei, @’ zzz q-c w, 6’ z q-c 6 (4.2) 
q’ zcz qQ-” wi, yi* = qayi 

T,’ = qn-c Ti, S’ = q-c s 

Xi’ = TjzaXiy T’ LI $+ 

G,’ s q=-%$, H’ zrz q2a-2j7, N,’ = q3a-ZNi 

The numbers a, b, c herein will be determined later, but it is always assumed that 
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O<a< 1, b<l (1.3) 
Inserting (1.2) into the dynamic equations of shell theory, after cancellations and mani- 

pulations based on using (1.1). we obtain : 
the equilibrium equations 

- ~~ p,r1’a-‘bd,2Ui’ = 0 

qa-=-2bp6dr2w’ = 0 

2 
i3.4. 

-&H’ -ivi’=-.O 
j 1 

the elasticity relationships 

.T,’ 

Gt = - 3 tyJzs, (x< + 

the strain-displacement formulas 

(l-5) 

(1.6) 

(4.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

It is assumed in the equations written above and everywhere henceforth, without any 
further reminder, that the subscripts i, j can take on the two pairs of values i = 1, j = 2 
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and i = 2, j = 1. Hence,each equation containing such subscripts must be considered 

as two; numerical subscripts are used in the single equations. 
For convenience in the subsequent exposition, the provisional factors p, p1’, p1 -p7 

are introduced into (1.4)-(1.11). and they must as yet be considered equal to unity . 
The symbol d, denotes differentiation with respect to the variable mentioned below. 

Below we shall consider only such integrals of the dynamic shell theory equations for 

which the following assumption is satisfied : all the quantities marked by dots, together 

with their derivatives with respect to &, &, 7, have the same asymptotic behavior, 
i. e. are commensurate to the identical power of q. It is postulated that such integrals 

exist in definite domains of variation of a,, a,, t . The first two equalities in (1.2) 
show that the desired quantities acquire a factor rl-a for each differentiation (with res- 

pect to a,, aa) in the integrals possessing the formulated property, and the factor v-’ 
for each differentiation with respect to t (only the factors influencing the asymptotics 
are taken into account, i.e. which are powers of 7). It hence follows that a is the in- 
dex of variability of the desired state of stress-strain in the variables al, aa, and b is 
the index of variability in t, which is later called the index of “dynamicity”. The rela- 

tive asymptotics of the desired quantities is given by the remaining equalities in (1.2). 
Thus, for example, the tenth and fourteenth equalities of (1.2) show that 

Ti = BGi, B = 0 (r3-3a+c) 

Within the scope of the assumptions made, the asymptotic order of each member in 

(1.4) - (1.11) is determined by the same powers of tl which are written down explicitly 
for them. On this basis, let us hence proceed as follows. 

Let the numbers a, b, c be fixed or subject to definite inequalities. Then the princi- 

pal members (containing the least power of 7 in the coefficients) are easily found in 

each of the equations (1.4) - (1.11) taken separately. Discarding all the remaining 

terms in (1.4) - (1. ll), we obtain an equation which can be called the principal equa- 
tion. In general, the principal system will be contradictory (for instance, the number of 

unknowns in the system itself or in one of its subsystems will be greater than the num- 
ber of equations). Hence, the values of a, b, c must be subjected to some constraints 

so that they would become admissible in this sense. It is shown below that a certain 
number of domains of admissible values of a, 6, c can be constructed, to each of which 
corresponds a noncontradictory principal system distinct from the others. 

The form of the principal system evidently determines very essential properties of the 
integral. Hence, it is natural to distinguish these latter according to its appropriate prin- 
cipal system. This is the first (static) criterion for the proposed classification of the in- 
tegrals of the dynamic equations. The discussions in Sects. 2 - 5 are based thereon. 

2. Membrane fntegrrlr. They are understood to be solutions corresponding 
to the case when a, b, c are subjected to the following constraints: 

0 s a < l/3, c = a, bs0 (2.1) 
Examining the coefficients of (1.4) - (1.11). we remark that the terms containing p3, 
Pe, P7 have factors of positive powers of rl because of (2.1). and the powers of 11 in the 
remaining members are nonnegative. Hence, the principal system can be obtained in 
the case under consideration by choosing the provisional factors as follows: 
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P3 = Pa = p7 = 0, p1 = pz = p4 = p5 = p = p’ = 1 (2.4 

The same scheme is used to derive the principal equations below without detailed expo- 

sitions. Inserting (2.2) into (1.4) - (1.7), we obtained the desired principal system. 

Equations(1.4),(1.5),(1.7) and(1.9) therein are 

2Eh 
1-G 

r12a--Zb&2Ui’ = () 

Tl’ 2s. 
+ 

7’2’ “Eh --- 
N11 H12 

- - 1-Q2 pdT2W’ = 0 
fiza 

Ti’ = & (EL’ + ZF~‘), 

. 8A. 
Tj) + 2a31j &? - 

J 

(2.3) 

These equalities yield nine equations (the equalities containing the subscripts i, j are 
double) with the nine unknowns 

T1’, s’, T 2’, e,‘, co’, Ed’, ul’, u2’, w’ (2.4) 

Let us call them the principal subsystem, and the quantities (2.4) the principal unknowns. 
There remain the unused equations (1.11) (1. lo), (1.8) (1.6). Introducing them into 
the analysis in the order in which they are listed, we can express the remaining unknowns 
of shell theory in terms of the quantities (2.4) by using direct operations. It is easy to 
see that here such solutions for which the displacements, the tangential stress resultants, 
and the tangential strain components are the basic unknowns, are called the membrane 
integrals, and the principal subsystem is the system of dynamical membrane equations. 

Note. The terms containing qa and q z”-zb in (2.3) are conserved since u can be 
zero. If cz > 0, then they can also be discarded. In particular, this means that the tan- 
gential inertial forces in the membrane integrals can play an essential part only for low 

variability. 

9. Bending integrrlr. As yet, they are understood to be solutions obtained 

when 
a > lJ2, c = a, b<Za-1 (3.1) 

Multiplying (1.5) by ~~~~~~~ in this case, and reasoning further exactly as in Sect. 2, 

we obtain that the following selection of the provisional factors 

P = P’ = p1 = pz = p&j = p, = 0, p3 = ps = p4 = 1 (3.2) 

corresponds to a passage to the principal system. 

Let us examine (1.5). (1.6) (1.8), (1. lo), (1.11) and inserting (3.2) therein, let us 
write them as follows (certain terms with the factors p, p’ and I)~ are still retained): 
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2Eh 
1 -- 62 

@a-~b--zdzsW’ = 0 

1 aG: 1 aH- 

_.-.L-__ P 
21 i di‘.lj 

+$ (Gi’ _ Gj’) _ 

(3.3) 

The equalities (3.3) form the principal subsystem. They contain eleven equations with 
eleven principal unknowns 

U-J’, yi’, ye’, xl’, x,‘, -c’, G’, H‘, G,‘, N;, N; (3.4) 

Equations (1.4),(1.7), (1.9) and (1.11) remain to determine the unknowns not appearing 
in (3.4). They form a system of differential equations in these quantities about which 
more is said in Sect. 4. 

It is henceforth considered that the bending integrals exist not only within the scope 

of the constraints (3.1) but also under less stringent conditions 

a > i12, c = a, ( b is arbitrary) (3.5) 
Then for sufficiently large b, the inertial terms in (1.4) and the first equation of (3.3) 
will contain rl to negative powers, but it is assumed here and below that the appearance 

of a factor with negative power of 77 in the inertial (and only the inertial) terms is ad- 

missible (this will still be discussed in greater detail). If p, p’, pR in (3.3) are taken 
equal to one (in place of zero), then these equations agree outwardly with the dynamic 

plate bending equations (in an arbitrary orthogonal curvilinear coordinate system), How- 
ever, this agreement is not at all complete : the shell metric is generally different from 
the plate metric, and besides, p, p’, pe must be considered zero in (3.3). 

4. Planar integrals, These are understood to be solutions of the dynamic equa- 
tions of shell theory obtained when a, b, c are subject to one of the following three 
groups of inequalities : 

0 s a < 1/21 c< a, b>O (4.17 

a > 112, c< a, b>2a-I (4.19 

a > 1/2, c< a, b<2a-$1. (4.1”) 

Eliminating (X.5), (1.6). (I. 8),(1.10) and (1.11) from consideration, we conclude that if 
any of the versions of condition (4.1) is satisfied, then it is necessary to set 

p4 = p7 = 0, p=p1=1 (4.2) 

in order to go over to the principal system (the provisional factors p’, pz, p3, ps, ps 
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enter only in the discarded equations and still remain undetermined). Equations (1.4), 
(1. ‘7), (1.9) form the principal subsystem. By virtue of (4.2) it is written as follows: 

1 -_++y$+,.*[~ 8Ai 
-s’- 

i J i j i 
vi’- w+ 2 aaj 

I 

and consists of eight equations with eight unknowns 

T;, S’, T,‘, q’, co’, Q’, UI’, uz’. 14.4) 

Returning to the equations discarded earlier, let us examine two cases: 

Case 1. Let the conditions (4.1”) or (.&lb) be satisfied, from which there re- 
sults rhat two inequalities are valid 

Then it is necessary to define 

b>2a-1, b>O 

c by the equality 

c=a-2b 

(4.5) 

(4.6) 

The terms with ps and ps in (1.5) hence contain q to zero power, and the exponent ?-I 
is positive for &and Ps l Therefore, it is necessary to take the additional equalities 

p3 = Pe = 0, Pa = P5 = 1 

which mean that in the principal system Eq. (1.5) becomes 

It permits determination of w since T,‘, S’, Tz’ enter into the group of principal un- 
knowns (4.4) and can be considered as given. Equations (1.11).(1.10),(1.8),(1.6) re- 
main unused. Introducing them into the analysis in the order in which they are listed’, 
the remaining ~knowns can be found by direct operations 

Case 2. Let there be compliance with the inequality 

b<2a-1 

(4.8) 

(4.9) 

~~~~nding to the requirement (4.1”). Then in place of (4.5) it is necessary to take 
the following equaIity : 

c=2-3a (4.10) 

(it is easy to see that (4.6) and (4.10) do not contradict the inequality c < a). An ana- 

lysis of the coefficients in (1.5), (1.6). (1,8), (1. lo), (1.11) hence shows that in addition 
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to (4.2) it is necessary to set 

Pe = P5 = PI = 0, Pz = p3 = 1 

Consequently, Eq. (1.5) becomes in the principal system 

(4.11) 

(4.12) 

Assumimg that the principal subsystem has already been solved, the right side of the 

equality therein must be considered known. The transverse stress resultants N,‘, N,’ 
in the left side of (4.12) can be expressed in terms of w by using (1.6). (1. B), (1.10) . 
Consequently, (4.12) goes over into an equation for the deflection w’. The remaining 

unknowns (4.8) are found in an obvious manner by using direct operations. 

The system (4.3) agrees outwardly with the dynamic equations of the plane problem 
of elasticity theory, written in an arbitrary orthogonal curvilinear coordinate system . 
Below (3.3) and (4.3) are provisionally called, for simplicity, the bending problem and 
the plane problem equations, respectively. Later it will be necessary to distinguish the 
planar integrals depending upon as to which version of the requirements(4.1) they cor- 

respond. If it is requirements (4.1”) or (4.1b), then we shall speak of the planar integ- 
rals of the type (c = a - 2b), otherwise, about the planar integrals of the type (c = 
2 -- 3~). In solving the principal system corresponding to the planar integral of type 

(c = u - 2b), the differential equations (with respect to a,, a,), namely, the equa- 
tions of the plane problem (4.3), must be integrated.only to construct the principal un- 
knowns (4.4). The deflection w is afterwards found from (4.7) by integration with res- 
pect to 7, and the construction of the remaining unknowns is achieved by direct opera- 
tions. It has been shown in Sect. 2 that the same situation holds also for the membrane 
integrals : only. the membrane equations (2.3) need be integrated in solving the princi- 
pal system. It may therefore be considered that the planar integrals of type (c = a - 
2b) are equivalent to the membrane integrals in the sense that they contain the identi- 
cal number of arbitrarinesses of integration: these latter originate, respectively, during 
solution of (3.3) and (2.3) which are systems of identical order. 

In solving the principal system corresponding to planar integrals of the type (c = 
2 - 3a), the system of differential equations must be integrated twice. The principal 
unknowns (4.4) are also determined from the equations of the plane problem (4.3) and 

w and the quantities (4.8) must be found from (4.12), (1.6), (1.8),(1. lo), (1.11). They 
differ from (3.3) just in that the trinomial written on the right enters into (4.12) instead 
of the inertia term. Considering the equations of the plane problem solved, this expres- 

sion must be considered known. Therefore, the inhomogeneous static plate bending equa- 
tions comprise the second system mentioned above. In the sense of the number of arbi- 
trary rules a planar integral of type (c = 2 - 3~) is equivalent to the bending integ- 
ral. For the latter (see Sect. 3) the principal unknowns (3.4) are determined from the 

bending equations (3.3), and the equalities (1.4). (1.7), (1.9) were indicated for the con- 
struction of the remaining unknowns in Sect. 3. Considering the quantities (3.4) therein 
as known, we see that these equalities are the inhomogeneous equations of the plane 
problem. Therefore, arbitrary rules originating both in the solution of equations of the 
plane problem and in the solution of the bending equations are contained in the planar 
integrals of type (c = 2 - 3~) and in the bending integrals. 
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5. Bending-plrnat integrals, These are the solutions in which 

u = l/z, c= a , b<O (5.1) 

For such values of a, b, c it is necessary to set 

P = p' = PI = pa = p7 = 0, pz = p3 = pa = p - 1 
5- (5.2) 

in order to go over to the principal system. It is easy to see that the dissapearance of 

the provisional factors p, p’, pe, p7 corresponds to the following simplifications: 

(1) discarding the antiderivatives of the desired functions (everywhere) as compared with 
their derivatives in comparison with a~, as; (2) discarding of the transverse stress resul- 
tants in the equilibrium equations (1.4); (3) discarding members with nl, u2 in the for- 
mulas for ‘II, r, Xs, Therefore, (5.2) denotes the hypotheses taken for the theory of 
states of stress with high variability, and therefore, the principal system of the planar- 

bending integrals is the dynamic analog of the equations of this theory. They are known 
and are not presented here, Let us note that integrals corresponding to the simple edge 

effect are also contained, as particular cases, among the bending-planar integrals, 

6. The classification of the integrals of dynamic equations according to the static 
criterion formulated at the end of Sect.1 has been completed. The vaiue of the number 
a, characterizing the variability of the desired quantities over the space coordinates, 
and the value of the number c characterizing the intensity of the normal deflections as 
compared with the intensity of the tangential displacements were decisive therein. The 
number b which governs the degree of dynamicity of the phenomenon studied hence 

remains almost arbitrary. 
Having noted this, let us introduce the number p, equal to the least power of q, in the 

inertial terms of the principal subsystem, and let the value of p underlie the second 

(dynamic) criterion for classification of the integrals of the dynamic equations. Namely, 

let us call the imegral quasi-static for p > 0, dynamic for p = 0 .and strongly dyna- 
mic for p ( 0. Each integral referred to a definite type according to the static crite- 

rion can, in turn, be classified according to the dynamic criterion also. The sense of p 
will hence be distinct for integrals of different type (according to the static criterion). 
Once again examining (2.3), (3.3) and (4.3), we see that for the membrane and bending- 

planar integrals pz-26 (6.1) 

for the bending integrals 
p=-226+4a-2 (6.2) 

for the planar integrals 

p -= 2a - 2b (6 .!I) 

The double classification proposed is expedient. The static criterion directly evinces 
those approximate equations for an integral of given type, from which it can be deter- 
mined (these are the principal equations). The mathematical specific-s associated with 
the classification according to the dynamic criterion is discussed in Sect. 10. 

7. Let us compare the proposed classification with the classification used in shell 

statics. 
The passage from dynamics to statics can be accomplished by setting b = - .v. In this 

case all those integrals for which no lower bound has been imposed on the value of b 
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remain valid. Among them are the membrane, bending, bending-planar integrals and 
planar integrals of the type (c I= 2 - 3~). In combination they possess sufficient com- 
pleteness so that the solution of any boundary value problem of shell statics could be 
complied therefrom if only the shell middle surface is not singular and all its edges are 
not asymptotic. This derives from the results elucidated in m], say. 

Indeed, if the variability of the desired stress-strain state is small (n<Vz), then the 
method of partition can be used for an approximate computation, i. e. the solution can 
be composed of membrane integrals and bending-planar integrals corresponding to sim- 

ple edge effects. If a = ‘1% the approximate computation can be performed by using the 

theory of states of stress with highvar~ability. This means that the complete solution of the 
problem is determined by bending-pIanar integrals. For a > ‘1% the partition of the state of 

stress into bending and tangential stress states occurs (see [I]. Ch. 14, Sect. 15)‘ i. e. the 
solution is a combination of bending and planar integrals of the type (c -2 - 3~). 

The case when the shell edges pass partially or entirely along the asymptotic lines of 
the middle surface is not included in the present analysis since the circumstances asso- 
ciated with the disappearance of normal curvature were not taken into account therein. 

Consequently, the generalized edge effects dropped out of the considerations. In order 
to include those cases, it is necessary to give a more flexible definition of the bending- 
planar integrals by replacing the equality a = Vz therein by the inequality a < I/~. 
The length of the paper does not permit a more detailed examination, 

Note. only the planar integrals of type (C = U-B) become meaningless for b = 
---CC . Such integrals are impossible in statics because the deflection w for them must be 
found from (4.7), and if w is independent of 8, this operation is unrealizable. 

8, Let us consider the free,steady vibrations of a shell. In such problems it may be 
considered that all the desired quantities depend only on a,, as and that the symbol 
of differentiation with respect to t is replaced by the factor io (ti is the frequency). 

By assumption (see Sect. 1). the asymptotics of the desired quantities should not change 
during differentiation with respect to the variable ‘G related to t by the second equality 

in (1.2). The 1 - o2 there, differs slightly from unity, hence, the asymptotic relation- 
ship 

p=V-G 
0 = +)0(l) (8.1) 

must be satisfied. This equality introduces the frequency parameter p and establishes 
its order relative ro the quantity q-r to be equal to the dynamicity index b. The asymp- 

totic properties of the frequency parameter h equal to p2 have been investigated in [Zj. 
The deductions obtained are formulated in the terminology of the present paper as fol- 
lows : 

(vi). There exist quasi-transverse vibrations. The shell deformation occurs therein 
mainly because of the displacements w with which the principal inertia terms are also 
associated. 

(1”). If 0 < a < 1/2, the vibrations are called quasi-transverse with low variability. 
They can be constructed by combining the membrane integrals with the bending planar 
integrals corresponding to the edge effects. The fundamental equations of the problem 
are hence the membrane equations (2.3). They govern the principal properties of the 
vibrations and, in particular, the asymptotics of the frequency parameter 

p z rj-b 0 (l) = 0 (11”) (8.2) 
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(lb). If l/a < a < 1, the vibrations are called quasi-transverse with high variabi- 
lity. They are described by the bending integrals, (3.3) are the fundamental equations 

in this case, and the asymptotics l.~ is 

p, = q-b 0 (1) = 0 (q’-2”) (8.3) 

(2). There also exist vibrations which are called quasi-tangential. The shell strain 
occurs therein mainly because of the tangential displacements ui, u2. Also connected 

with these latter are the principal inertial forces. 
(aa). If 0 < a < i/2, the quasi-tangential vibrations can be constructed by com- 

bining planar integrals of the type (c = a - 2b) with bending integrals. 

Note. The integrals in r2] which must be adjoined to the membrane or planar inte- 
grals so that all the boundary conditions could be satisfied are called complementary. 
They can be obtained both as a particular case of bending-planar integrals and a parti- 
cular case of bending integrals. The former of these possibilities has been used in case 
(la).and the latter in case (P). 

(ab). If 1/2 < a < 1, the quasi-tangential vibrations are described by planar inte- 
grals of the type (c = 2 - 3~). 

The equations of the plane problem (4.3) are fundamental for the cases (2”) and (ab), 
and we have for the asymptotics of the frequency parameter 

p = qb 0 (1) = 0 (q@) (8.4) 

In the limit case when a = 0, the difference between the quasi-tangential and quasi- 
transverse vibrations vanishes. Either can be constructed approximately by the scheme 
(‘la), and the asymptotics /_L is determined by the relationships (8.2) or (8.4). In the 
other limit case, when a = 1/2, the quasi-transverse vibrations are described by bending- 
planar integrals, and the quasi-tangential vibrations by planar integrals of the type (c = 

2 - 3~). The asymptotics p is hence determined by (8.3) and (8.4). respectively. 
It has also been shown in C2] that vibrations with the ultralow frequencies (p e_ 1) 

accompanied by the formation of a large number of nodal lines passing along the asymp- 
totic lines of the middle surface are possible in shells of nonpositive curvature. It is 

impossible to detect them in the present investigation. This is also related to the fact 

that too rigorous requirement has been imposed on the number a in (5.1). 

For given U formulas (8.2) - (8.4) permit determination of the index of dynamicity 
b for a given kind of vibration: for quasi-transverse vibrations b = 0 for a < lJ2 and 
b = 1 - 2~ for a > 1/2, while b = a for quasi-tangential vibrations. 

It also follows from the above that an integral of a specific type corresponds to each 
kind ofvibration (if the frequencies are not ultralow) in the static classification, namely, 
the integral whose principal equations are fundamental for the vibrations under consider- 
ation. By means of (6.1) - (6.3) it is easy to verify that the values of b obtained by the 
method described, make p zero for the integrals corresponding to a given kind of vibra- 
tions. This permits giving the following physical interpretation to the second criterion 
for the classification proposed : membrane, bending, and planar integrals are quasi-static, 
dynamic, or strongly dynamic depending on whether the degree of their dynamicity is 

less than, equal to, or greater than the degree of dynamicity of the corresponding free 
vibrations. 
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9. If forced steady vibrations are studied, then the frequency o introduced in Sect. 
8 will be a given number. Therefore, the number b governing the index of dynamicity 

of the problem under consideration can be found by means of (8.1). The index of varia- 
bility of the desired state of stress-strain a can also be considerd known (it can be as- 

sessed by means of the variability of the external effect [l, 3, 41). This permits estab- 

lishment in advance from what type of integrals the solution of the given problem should 
be composed, and therefore, pointing out the path to its approximate solution. 

Example. Let a closed cantilever shell of revolution perform forced steady vibra- 

tions under the effect of tangential forces applied to the free edge, and varying accord- 
ing to the law sin ncp sin it {cp is the longitude). Then the index of variability of the 

external load 6 and the degree of dynamicity 6 are determined from the equalities 

n = q-e, l/m/BEh o = q-b 

If 8 < ‘12, b < 0, then the solution of the problem can be composed from a membrane 
integral and a bending-planar integral corresponding to the simple edge effect (see Sect. 
7). This means that in this case the partition method can be used as an approximate 

approach. There results from (6.1) that both the membrane and the bending-planar 
integrals are quasi-static for b < 0 and dynamic for b = 0. 

If 6 < l/t and b > 0, then according to the last inequality in (3.1) and (5. l), the 
construction of the membrane and bending-planar integrals becomes impossible. The 

former must be replaced by the planar integral of the form (c = a - 2b) , and the lat- 

ter by the bending integral. Therefore, for sufficiently high dynamicity (b > 0) the me- 

thod of partitions requires modification for investigation of steady forced vibrations : 
the fundamental state of stress must be determined from the Eqs. (4.3) of the plane prob- 
lem (this denotes a diminution in the influence of the shell curvature), and the simple 

edge effect must be replaced by the state of stress corresponding to the bending integrals. 
It can be shown that the variability of the plane integral equals the variability of the 
external effect, i. e. a = 6. Hence, it follows from (6.3) that the planar integral can 
bequasi-static (for b < O), dynamic (for b = 0) and strongly dynamic (for b > 0). A 
discussion of the bending integral from this viewpoint would require a great deal of 
space, so let us just note, without going into details, that the bending integral is always 
strongly dynamic in the problem under consideration. 

10. The two-dimensional equations of thin shell theory contain a small factor in 
the coefficients of the highest derivatives (with respect to a,, as). The general asymp- 

totic theory of such equations has been developed in [S], where an important concept of 
regular degeneration is introduced. Such degeneration is characteristic for the boundary 
value problems of shell statics. All the most important approximate methods of static 
shell analysis can be interpreted as a consequence of the regularity of degeneration. In 

the dynamic problems, these properties are certainly conserved while only quasi-static 
integrals enter into the solution, since the static analysis can then be considered as the 
initial approximation of some iteration process. 

In stationary problems (forced vibrations, say), nonregular degeneration is also possible. 
It will hold when the index of dynamicity is so great that dynamic and strongly dynamic 
integrals enter into the solution. Difficulties associated with resonance phenomena also 
occur at the same time. The case when a dynamic membrane integral enters into the 
solution is especially complex since transition lines y generally appear in the domain 
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under consideration, i.e. lines on which the type of dynamic membrane equations chan- 
ges [6]. The assumption made in Sect. 1 about the asymptotics of solutions of the dyna- 

mic equations is incorrect in the neighborhood of y and it is necessary to seek methods 
of merging the solutions on different sides of Y (this problem is solved in [7 - 91 for 
shells of revolution). The lines y on which the type of equations changes are absent in 

the strongly dynamic case. Moreover, a large coefficient appears in the inertial terms. 
This opens the road to application of new asymptotic approaches and in the simplest 
cases (for example, in the analysis of shells of revolution) permits obtaining solutions in 

a perfectly elementary manner. However the attempts to generalize such approaches 

result in substantial difficulties connected with the nonregularity of degeneration. 
Processes (elastic wave propagation, say) with inhomogeneous variability in time are 

studied in nonstationary dynamics problems. In this case the classification according to 

the dynamic criterion can be used to construct a (Lapalce) mapping. It can then be con- 
sidered that d12 = p2 (p is the mapping parameter) and diverse approximate approa- 
ches can be applied in different ranges of variation in p. Difficulties associated with 
the need to construct the solution in a complex domain originate here. Meanwhile, new 
opportunities associated with the fact that degeneration is always regular in nonstation- 

ary problems, also occur. 
In conclusion, let us note that N. A. Alum% [lo] first raised the questions discussed 

herein relative to nonstationary processes. 
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An asymptotic formula for the distribution function of the natural frequencies 
of a thin elastic shell is proved. The formula is used to determine the frequency 

density under different assumptions relative to the shell geometry. Density curves 

are presented. 

1. Pormulrtfon of the problem. Fundamentrl reeult,, Thedeter- 
mination of the frequencies of a thin elastic shell clamped at the boundary results in the 

following eigenvalue problem (see [ 11, p. 97, IJ], p. 297) : 
3 

x( 

h2 12 nij + l?ij 1 Uj = ?d.Li (i = 1, 2, 3) 
j=1 

(1-l) 

(1.2) 

Here Ui are components of the displacement vector of a point on the shell middle sur- 
face, lij and n+j are the differential operators 


